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Wave8uide BandstoP Elliptic Function Filters

J. DAVID RHODIN

Abstract-Using the “natural prototype” for elliptic function

filters, a design procedure is presented for a class of waveguide

bandstop filters, which exhibit equiripple passband and stopband

responses. Due to the availability of explicit formulas for element

values in the natural prototype elliptic function filter, the design

procedure is entirely analytic and does not require numerical syn-

thesis techniques.

The resulting physical structure is the familiar uniform guide

with iris-coupled series stubs. Unlike the bandstop filters designed

from maximally flat or Chebyshev prototypes, the elliptic function

design results in stubs that are not exactly three-quarter-wave

coupled.

lNTRODUCTION

ECENTLY, design procedures have become

R
available for waveguide bandpass elliptic func-

tion filters [1 ]– [3 ]. The latter is based upon the

conventional prototype shown in Fig. 1(a) and the

former two on similar modified versions, If this proto-

type were to be used to produce waveguide bandstop

filters, dual mode cavities would normally be required

to realize pairs of transmission zeros in the bandstop

region and interaction between modes would become

difficult to control.

In a recent paper [4], a new prototype for elliptic

function filters has been devised with the added ad-

vantage of explicit formulas for element values. In this

“natural prototype, ” shown in Fig. 1 (b) for the high-

pass case, the transmission zeros are realized individu-

ally in a direct ladder form, thus requiring only single

cavities in any bandstop region and allowing the normal

configuration [5] for waveguide bandstop filters to be

used. This is shown in Fig. 2(a) where the iris-coupled

series stubs are normally separated by approximately

three-quarters of a wavelength to avoid evanescent

mode interaction [5]. Explicit design equations are pre-

sented for the waveguide bandstop elliptic function

filter realized in this form.

ELEMENT VALUES FOR HIGH-PASS PROTOTYPE

ELLIPTIC FUNCTION FILTERS [4]

For the nth degree net}vork shown in Fig. 1 (b), which

exhibits the optimum elliptic function insertion loss, as

show-n in Fig. 2(b), of the form

‘=lO’og[’+~[cdo(+cd-l~Tl‘1)
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Fig. 1. (a) Conventional low-pass prototype elliptic function
filter. (b) Natural prototype elliptic function filter.
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Fig. 2. (a) Symmetrical b?ndstop filter. (b) Insertion loss
function for high-pass prototype.

where the subscript “0)’ indicates dependence on the

elliptic parameter wO, otherwise on the parameter m,

the element values are, for r = 1--wz,

“[(2r7Kldn[w)Kl
c, = —–

2y(l – m)

‘r= -“m[sn[%l)K1 ‘SE]

(2)

(3)

“cd[:lcd[wKll “)
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and, forr=l~n —1, Comparison with standard tables on Chebyshev

/
filters will show that a nine-cavity filter is required to

K,,,+l =
v

2rK-

[1
1 + yzm snz — (5) meet the above specification, illustrating the superiority

n of the elliptic function response.

where SYMMETRICAL BANDSTOP FILTER (ODD DEGREE)

[

nKo U

1

1 To convert the basic natural prototype shown in Fig.
Sc — l–filzo =–

K
y=sc[ull–nz] (6)

1 (b) into a form that is readily realizable in waveguide,e
it is first necessary to eliminate the frequency invariant

with the conditional requirement reactance in the prototype by using phase shifters of

?2K0 Kn’ unity characteristic impedance defined bv a transfer

In (l)–(5) and (7), the Jacobian elliptic functions are

dependent on the parameter m.

The independent parameters in these formulas are e,

n, and m. If co’ is the ratio of the required passband band-

width to the stopband bandwidth we have

(8)

and the parameters e and n may be directly related to

L~ and LE, the transmission loss in the stopband and the

return loss in the passband, respectively, in the follow-

ing manner:

matrix of the form

[

cos O j sin e

j sin 8 1Cos (1 “

Consider a basic series element in

work as shown in Fig. 3(a) where

Y, = [UC, + B,]

Z, = R,.

This element is then decomposed as

where

Y,’ = Y,nr2

z, = x, + x,’.

(15)

the prototype net-

(16)

shown in Fig. 3(b)

(17)

or

[1
Ls:= lolog 1++ Applying this procedure to every series element and then

retaining the series elements of admittance Y,’, we have

the typical coupling network shown in Fig. 3(c) with a

LR:= lolog l+<

L,s =

‘; “) EFI[4T![’720 log –

L,? = 20 log = (lo)
~oll!?

F’+l 0’1
resulting in

[1
L~+LR= lOlog ~ . (11) “1 +1

mo

[

–X,’%.} ~

[

K,,,+lz – X,’X,+l

For rno small, KT,,+ln,
.i

K, ,,+l?ZT%,+ 1 1—— 1(18)

?’?20= l&-7K0’/K0, (12) ?Z@Zr+1 – Xv+ln,
~—

From (11 ) and (12) we therefore have the basic design K,,r+l K, ,,+ln,+l

equation which may be equated to the ideal phase shifter with a

H,K’ transfer matrix,---
13.65 ~Y – 12 = LR + Ls. (13)

[

cos $,,,+1 j sin $,,, +1

1
(19)

As an example, let L8+-L~ =45 dB and u’= l/m112 j sin +,,,+1 Cos *,,r+l

= 1.25( (K’/K) =0.88). From (13),

45 + 12
n>-

113.65 X 0.88 =

to yield the set of recurrence formulas for r = 1 -(n – 1)/2

(n odd):
4.8 (14)

nTK,,~+l

i.e., n=5. “+1= ~n,’ + X.’
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Jzr ho= Aoo and may be realized to withiri atiy half-wave-

length integer. In practice, the lengths of these coupling
● ●

guides should be between one-half and one wavelength

(a) long to prevent evanescent mode interaction and avoid

jxr

●

(b)

(c)

excessive length.

The resonant stubs are realized by inductive aperture-

coupled series stubs of uniform guide with an admit-

tance, normalized to the main guide of

(24)

where B,’ is the midband susceptance of the iris and c#,

the electrical length of the cavity, which is normally in

-m the range (7r/2) <@r <T..- —-

Q From (16), (17), and (23), the required susceptance
w,n

for the rth resonant stub is.- —-

(d)

Fig. 3. (a) Typical series element. (b) Impedance transformation
for series element. (c) Typical coupling element. (d) Transformed
prototype network for bandstop filter.

())2?”+1 2
X,+1 = Zr+l — Xr+l’ = x: — (20)

n,

with

[1
#r,r+I = – tan-’ ~ .

r
(21)

The initial conditions are

?’21 = 1, XI’ = Z1 (22)

and are chosen to retain the normalized generator im-

pedance of unity.

Since the basic prototype inherently possesses com-

plex conjugate symmetry, it is only necessary to evalu-

ate the recurrence formulas up to the central element

since the transformed network will also possess complex

conjugate symmetry. Furthermore, since w is odd, at

w = co there is perfect transmission ensuring the can-

cellation of the frequency invariant reactance at the

center. Consequently, the final network is as shown in

Fig. 3(d).

To convert this prototype into a waveguide bandstop

filter, we apply the familiar frequency transmission

().-+(2! I–*
AgLl

(23)

where

o! = (Agl+&2)/(x,l –X,2) ;

A,* guide wavelength at lower stopband frequency;

A.z guide wavelength at upper stopband frequency;

Xgo = (&l+&)/2, guide wavelength at center stop-

band frequency.

“[”C”(l-:)+Bl (25)

which is equated to (24) and its derivative at midband

to give

Br’ + cot ~, = – B,n,z

B,’ + o,(1 + cotz (j,) = aC,~z,2 (26)

resulting in & being evaluated iteratively through the

equation

0,(1 + cot’ 4,) – cot 4. = (aC, + B,)n,2 (27a)

or

24. – sin 24,
= (cK, + B,);z,z (27b)

1 – Cos 24,

~vith the initial approximate value of

(28)

Then B,’ is obtained from

5’ = – [n,2B, + cot A]. (29)

In summary, for the symmetrical bandstop response

shown n Fig. 4(a) the element values for the filter

shown in Fig. 4(b) are obtained as follows.

Given Aol, A,z, A, I’, &Z’, LR, and L~ where

and

A,l + Aq2
Cy= —— .

hl – Ag2

(30)

The unity impedance phase shifters are simply re-

alized by an equivalent length of uniform waveguide at
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Fig.4. (a) 13andstop inse.rtion loss function.
(b) Final configuration for bandstop filter.

Determine n from

iv(w) 12
LE+L~g = 13.6.5n––

K(m)

and mo from

K(mJ = K(m)

n‘K’(mo)K’(m) ‘

Compute
1
- = 10 ~ [Ls/20]
6

~ = K’(m)

--sC-’[: ‘ ‘-ma]K’(wzO)

y=sc[U\l– m].

f

(31)

For r = 14(n+l)/2, C., B., R,, and K,,r+l are defined

in (2)–(5) and n, ancl i,,,+l are obtained from successive

application of the recurrence formulas (20)–(22) for

?=1+(?’2-1)/2.

For r = 1-+(Tz+ 1)/2, (27)-(29) are applied and finally,

from the complex conjugate symmetry property,

#w-r, rl-r+l = 3~ – +,,,+1

‘h-r+, = A

and

B,m-,+l’ = B.’ + 2n,2B,. (32)

From a physical viewpoint it may be noted that the

resonant frequencies of the stubs occur in consecutive

order along the filter; i.e., if the transmission zeros occur

at ~l-jm in increasing order, then these are realized by

stubs 1 +n along the filter. This configuration may be

contrasted with the results obtained from the conven-

tional prototype where transmission zeros necessarily

occur in pairs that produce zeros with geometrical sym-

metry about the band center.

For the specific case of the inverse Chebyshev re-

sponse (m= O), the design equations simplify consid-

erably to the direct design equations:

X.1 + A,z
~=

A* I — A*2

1

– = 10 ~ [Ls/20] y = sinh n sinh–l ~
e e

24, – sin 24,
.

1 – Cos 24,

Zysin[(:r U=]

“F+cos[%pll

“=[2Y4(:’VI ‘co!

+,,,+1 z : “

CONCLUSIONS

(33)

(34)

(35)

(36)

A direct design procedure has been presented for

waveguide elliptic function filters from explicit formulas

in the natural prototype. The results have been re-

stricted to the odd-degree case to enable a uniform guide

to be used. For the even-degree case, the introduction of

a small discontinuity in the center of the filter will allow

the same design procedure to be used.

The final form of network is the familiar uniform

guide with series stubs that have previously been used

for the realization of convention maximally flat and

Chebyshev filters [5]. This extension to the inverse

Chebyshev and elliptic function responses will enable

more stringent specifications to be met by the same

physical device.
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