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W aveguide Bandstop Elliptic Function Filters

J. DAVID RHODES

Abstract—Using the “natural prototype” for elliptic function
filters, a design procedure is presented for a class of waveguide
bandstop filters, which exhibit equiripple passband and stopband
responses. Due to the availability of explicit formulas for element
values in the natural prototype elliptic function filter, the design
procedure is entirely analytic and does not require numerical syn-
thesis techniques.

The resulting physical structure is the familiar uniform guide
with iris-coupled series stubs. Unlike the bandstop filters designed
from maximally flat or Chebyshev prototypes, the elliptic function
design results in stubs that are not exactly three-quarter-wave
coupled.

INTRODUCTION

ECENTLY, design procedures have become
R available for waveguide bandpass elliptic func-
tion filters [1]~[3]. Thelatter is based upon the
conventional prototype shown in Fig. 1(a) and the
former two on similar modified versions. If this proto-
type were to be used to produce waveguide bandstop
filters, dual mode cavities would normally be required
to realize pairs of transmission zeros in the bandstop
region and interaction between modes would become
difficult to control.

In a recent paper [4], a new prototype for elliptic
function filters has been devised with the added ad-
vantage of explicit formulas for element values. In this
“natural prototype,” shown in Fig. 1(b) for the high-
pass case, the transmission zeros are realized individu-
ally in a direct ladder form, thus requiring only single
cavities in any bandstop region and allowing the normal
configuration [5] for waveguide bandstop filters to be
used. This is shown in Fig. 2(a) where the iris-coupled
series stubs are normally separated by approximately
three-quarters of a wavelength to avoid evanescent
mode interaction [5]. Explicit design equations are pre-
sented for the waveguide bandstop elliptic function
filter realized in this form.

ELEMENT VALUES FOR HiGu-Pass PROTOTYPE
ErLipTic FuNcrion FiiTers [4]

For the nth degree network shown in Fig. 1(b), which
exhibits the optimum elliptic function insertion loss, as
shown in Fig. 2(b), of the form

1
L =101 1 —I 1
8 + nky ™)

[ (]

Manuscript received December 28, 1970; revised June 12, 1972.
The author is with the Department of Electrical and Electronic
Engineering, the University of Leeds, Leeds, England.

(b)

Fig. 1. (a) Conventional low-pass prototype elliptic function
filter. (b) Natural prototype elliptic function filter.
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(a) Symmetrical bandstop filter. (b) Insertion loss
function for high-pass prototype.

Fig. 2.

where the subscript “0” indicates dependence on the
elliptic parameter m,, otherwise on the parameter m,
the element values are, for r =1-—#,
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and, for r=1—-n—1,

/ 2rK
Koy = 14 v*m sn{ ] 5
+1 4/ ¥ " ©)
where
nKyU 1
sc 1—mp| =- y=sclU|1—m] (6)
K €

with the conditional requirement

nK, K
K K D

In (1)—(5) and (7), the Jacobian elliptic functions are
dependent on the parameter #.

The independent parameters in these formulas are ¢,
#, and m. If ' is the ratio of the required passband band-
width to the stopband bandwidth we have

1
o = 8)

mli2

and the parameters € and # may be directly related to
Lgsand Lg, the transmission loss in the stopband and the
return loss in the passband, respectively, in the follow-
ing manner:

1
Ls = 101log I:l —l——]
62
&
Ly = 10 log [1 -l——] 9)
20

or

1
Lg = 20log l:—:|
€

Le ~ 20 10g|: ‘ ] (10)
WORVE
resulting in
1
Ls+ Lr = 10 log [—:I (11)
"y
For mg small,
e = 16¢ 7K /Ko, (12)

From (11) and (12) we therefore have the basic design
equation

’

n
1865 ——— 12 = Le + Ls (13)

As an example, let Lg+Ls=45 dB and o' =1/m1/2
=1.25((K’/K) =0.88). From (13),

45 + 12
n > - +

LA (14)
13.65 X 0.88

i.e., m=35.
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Comparison with standard tables on Chebyshev
filters will show that a nine-cavity filter is required to
meet the above specification, illustrating the superiority
of the elliptic function response.

SyYMMETRICAL BaNpsTOP FiLTER (ODD DEGREE)

To convert the basic natural prototype shown in Fig.
1(b) into a form that is readily realizable in waveguide,
it is first necessary to eliminate the frequency invariant
reactances in the prototype by using phase shifters of
unity characteristic impedance defined by a transfer

matrix of the form
|: cos@ 7sin G:I
jsing  cos6l

Consider a basic series element in the prototype net-
work as shown in Fig. 3(a) where

(15)

If'r = [COC,- + Br_‘

Z, = R, (16)

This element is then decomposed as shown in Fig. 3(b)
where

Yr, = anrz

Z, =X, + X, (17

Applying this procedure to every series element and then
retaining the series elements of admittance V,/, we have
the typical coupling network shown in Fig. 3(c) with a
transfer matrix

1
~ 0 l_l iX) ,— 0 K l] i Xria
(23
0 |'0 1 L—] 0 LO 1
K'r,r+1
Nrp O _I
L Prp1

__Xr/nr»}»l . [Kr,r+12 - XTIXH-I]

J
Kr,H-l'”/r K'r,r—{-lnrnH—l
= (18)
. nrnr+1 - Xr+1nr
J -
- Kr,r+1 Kr,r+1nr+1

which may be equated to the ideal phase shifter with a
transfer matrix

[ cos ¢r,r+1 ] sin ‘PT.T-H-]

jsindr,p1 COSYrppn

(19)

toyield the set of recurrence formulasforr=1—(n—1)/2

(n odd):

anr,r+1
Nry1 =

vt + X,*
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Fig. 3. (a) Typical series element. (b) Impedance transformation
for series element. (c) Typical coupling element. (d) Transformed
prototype network for bandstop filter.

iy 2
X1 = Zop1 — Xot| = A( “) (20)
1y
with
2
¢r,r+1 = - tanﬂ[:X ,il- (21)
The initial conditions are
n = 1, Xll = Zl (22)

and are chosen to retain the normalized generator im-
pedance of unity.
Since the basic prototype inherently possesses com-
plex conjugate symmetry, it is only necessary to evalu-
" ate the recurrence formulas up to the central element
since the transformed network will also possess complex
conjugate symmetry. Furthermore, since 7 is odd, at
w= o there is perfect transmission ensuring the can-
cellation of the frequency invariant reactances at the
center. Consequently, the final network is as shown in
Fig. 3(d).
To convert this prototype into a waveguide bandstop
filter, we apply the familiar frequency transmission

A
W« <1 — —~g—>
Ago
where

& = O‘yl +>‘g‘l)/0‘yl-)‘g2) '

Aa  guide wavelength at lower stopband frequency;

A guide wavelength at upper stopband frequency;

Ao =N +N2)/2, guide wavelength at center stop-
band frequency.

(23)

The unity impedance phase shifters are simply re-
alized by an equivalent length of uniform waveguide at
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As=Mg and may be realized to within any half-wave-
length integer. In practice, the lengths of these coupling
guides should be between one-half and one wavelength
long to prevent evanescent mode interaction and avoid
excessive length.

The resonant stubs are realized by inductive aperture-
coupled series stubs of uniform guide with an admit-
tance, normalized to the main guide of

Ao Ago
—3B/ — — j cot [4;,. ——]
J A / A

40 g

(24)

where E,’ is the midband susceptance of the iris and ¢,
the electrical length of the cavity, which is normally in
the range (w/2) <¢, <.
From (16), (17), and (23), the required susceptance
for the rth resonant stub is
o)+
Ao

pi[ec i -

which is equated to (24) and its derivative at midband
to give

(25)

B, + cot ¢, = .
Br, "I_ ¢r(1 + C0t2 ¢r) =

|

|
&
3

(26)

|
2
o

resulting in ¢, being evaluated iteratively through the
equation

¢-(1 + cot?¢,) — cot ¢, = (aC, + B)n,2 (27a)
or
2¢, — sin 2¢,
——— = (aC + Bon,? 27b
1 — cos 2¢, (ol + Brjn (27)
with the initial approximate value of
—=1—-— . (28)
7r(aC + B)
Then B, is obtained from
Br, = - [nrz-Br + cot ¢r] (29)

In summary, for the symmetrical bandstop response
shown n Fig. 4(a) the element values for the filter
shown in Fig. 4(b) are obtained as follows.

Given N, Nz, Nty N2’y Le, and Lg where

2)\1}0 = )\1]1 + >\/]2 = )\ﬂll + )\u'l,

[ )\ul - X/7‘3 }2
m =\ —
Aot’ — Ay

>\q1 + )\/J'Z
>\yl - )‘02

compute

(30)

and
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(b)

Fig. 4. (a) Bandstop insertion loss function.
(b) Final configuration for bandstop filter.

Determine n from

Lz 4 Lg = 13.65 K'm) 12
R 8 = 007 K(m)
and m from
K (my) K(m)
" - = .
K'(mo) K'(m)
Compute
1
- =101 [Ls/20]
€
K’ 1
U= (@sc—l[— Il—m(,:l
K’(WLQ) €

y=sclU|1—m] (31)

For r=1—(n+1)/2, C,, By, R,, and K, 4, are defined
in (2)~(5) and #, and ¥»,.41 are obtained from successive
application of the recurrence formulas (20)-(22) for
r=1—(n—1)/2.

Forr=1—(n-+1)/2, (27)-(29) are applied and finally,
from the complex conjugate symmetry property,

lPn—r,n—r+1 =3r — ‘pr,'r-l—l
¢'n—7‘+1 = ¢r
and

Burit = B/ + 2n,°B,. (32)

From a physical viewpoint it may be noted that the
resonant frequencies of the stubs occur in consecutive
order along the filter; i.e., if the transmission zeros occur
at fi—f, in increasing order, then these are realized by
stubs 1—# along the filter. This configuration may be
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contrasted with the results obtained from the conven-
tional prototype where transmission zeros necessarily
occur in pairs that produce zeros with geometrical sym-
metry about the band center.

For the specific case of the inverse Chebyshev re-
sponse (m=0), the design equations simplify consid-
erably to the direct design equations:

Agl + >\02
a e ————
)\01 - /\y2
1 1
- =101 [Ls/20] 1y = sinhnsinh—1- (33)
€ €
2¢, — sin 2¢, 1
1 — cos2¢, . |:(2r — l)w:l
2y sin | —
2n
2r — U7
- | @ + cos ——:H (34)
2n
B/ g +eotd,|  (39)
r = ol @,
|:(21' — l)w:l ¢
2y tan | —
2n
3
\br,r-{-l =" (36)
2
CONCLUSIONS

A direct design procedure has been presented for
waveguide elliptic function filters from explicit formulas
in the natural prototype. The results have been re-
stricted to the odd-degree case to enable a uniform guide
to be used. For the even-degree case, the introduction of
a small discontinuity in the center of the filter will allow
the same design procedure to be used.

The final form of network is the familiar uniform
guide with series stubs that have previously been used
for the realization of convention maximally flat and
Chebyshev filters [5]. This extension to the inverse
Chebyshev and elliptic function responses will enable
more stringent specifications to be met by the same
physical device.
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